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Three-dimensional Rayleigh-Taylor instability 
Part 1. Weakly nonlinear theory 
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Three-dimensional weakly nonlinear Rayleigh-Taylor instability is analysed. The 
stability of a confined inviscid liquid and an overlying gas with density much less 
than that of the liquid is considered. An asymptotic solution for containers of 
arbitrary cross-sectional geometry, valid up to order e3 (where E is the root-mean- 
squared initial surface slope) is obtained. The solution is evaluated for the 
rectangular and circular geometries and for various initial modes (square, hexagonal, 
axisymmetric, etc.). It is found that the hexagonal and axisymmetric instabilities 
grow faster than any other shapes in their respective geometries. In addition it is 
found that, sufficiently below the cutoff wavenumber, instabilities that are equally 
proportioned in the lateral directions grow faster than those with longer, thinner 
shape. However, near the cutoff wavenumber this trend reverses with instabilities 
having zero aspect ratio growing faster than those with aspect ratio near 1 .  

1. Introduction 
One of the most fundamental hydrodynamic instabilities occurs when an interface 

separating two fluids is accelerated into the heavier fluid. The existence of the 
instability is universally understood ; everyone intuitively knows that when a 
container of water is turned upside down the water falls out. However, the study of 
this seemingly simple phenomenon has challenged researchers for over four decades. 
Early interest in the subject was motivated by applications to nuclear weapons. More 
recently, Rayleigh-Taylor instability has found a wider spectrum of interest in such 
fields as geophysics and astrophysics as well as nuclear safety. Taylor (1950) 
considered the linear stability of an unstably stratified two-fluid system and 
obtained an expression governing the growth of the unstable surface waves. Later 
Bellman & Pennington (1954) added surface tension and viscosity to Taylor’s linear 
theory. Early on it was recognized that the inherent nonlinearity of the problem 
played an important role in the growth of the instability as soon as the surface waves 
grew to an appreciable height. Emmons, Chang & Watson (1960) addressed this 
problem by performing a weakly nonlinear asymptotic analysis of the two- 
dimensional instability. Later Nayfeh (1969) corrected an error in their analysis 
where they failed to account for the singular nature of the perturbation problem. 

Though weakly nonlinear theory provides useful information concerning the 
effects of nonlinearity on the instability, it was recognized that, like the linear 
theory, the weakly nonlinear theory was valid only for instabilities of small 
amplitude. Other researchers (Fermi & Von Neumann 1960; Layzer 1955; Dienes 
1978; Baker & Freeman 1981) have used simplified models to study the nonlinear 
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instability. This work suffers from the fact that the accuracy of these models can only 
be determined empirically. On the other hand, numerical methods (Harlow & Welch 
1966; Daly 1967, 1969; Baker, Meiron & Orzag 1980; Pullin 1982; Menikoff & 
Zemach 1983) have yielded reliable results ; however, numerical calculations of 
Rayleigh-Taylor instability with large surface displacement remains a formidable 
problem, even by today’s standards, requiring a significant amount of computational 
resources. 

Because of the difficulty in analysing the nonlinear instability, essentially all of the 
work done to date has been concentrated on the two-dimensional geometry. It is the 
aim of this work to analyse the three-dimensional instability. Weakly nonlinear 
theory, while being significantly less difficult than a numerical method, has proven 
to yield dependable results within its region of validity. We develop a weakly 
nonlinear three-dimensional asymptotic solution of Rayleigh-Taylor instability in 
enclosures of arbitrary cross-sectional geometry. We then evaluate this solution for 
several instabilities in both rectangular and circular geometries. To simplify the 
analysis we consider the instability of two inviscid, incompressible fluids with a large 
difference in density. The method of analysis follows that of Nayfeh (1969) with 
extensive use of the notation of Miles (1976). 

2. Mathematical formulation 
We consider the irrotational motion of an inviscid liquid of density p contained in 

a cylindrical basin Q with cross section x’ and unit outward normal n.  Let d‘ be the 
undisturbed depth of the liquid and x‘ and z’ be the horizontal and vertical 
coordinates in a reference frame fixed in 52 so that z‘ = ~ ‘ ( x ‘ ,  t’) and z’ = - d  a t  the 
bottom. Let q5’(x‘, z’, t‘) be the velocity potential (defined as Vq5 = the fluid velocity 
relative to Q) and g be the acceleration of 52 relative to a free-falling reference frame 
and perpendicular to the quiescent interface (positive when in the positive z’ 
direction). We assume the overlying fluid to be a gas with density much less than the 
density of the liquid so that its effect on the motion of the liquid can be neglected ; 
however we include surface tension y.  

For the purpose of making the governing equations dimensionless we choose as a 
length scale l /k’,  where k‘ is the wavenumber of the initial disturbance, and as a 
velocity scale (gllc’); .  We then define the following dimensionless variables : 

x = k’x’, z = k‘z‘, t = t’(gk‘)i, = k ‘ f ,  q5 = Q’(k’”9)t (2.1) 

In  terms of these variables, the governing equations and boundary conditions are 

V2q5 = 0 (x in X, -d  < z < T ) ,  (2 .2a)  

qt+Vq5-Vq-q5z=0 ( x i n S , z = y ) ,  (2.26) 

( 2 . 2 c )  

Vq5-n = 0 (on Q), (2.2d) 

where d = k’d’, S = k”S’. The parameter K is given by 
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and kk, the cutoff wavenumber, is given by 

For small amplitude, q5 can be expanded in a Taylor series about the undisturbed 
interfacial position (7 = 0). This allows (2 .2b )  and ( 2 . 2 ~ )  to be applied a t  q = 0, 
yielding the following conditions : 

( 2 . 5 a )  I (2 .5b )  

(x in 8, z = 0). 

Tt  + vq5 * VT + rvq5z.vr - $2 - r9** - h 2 $ z 2 z  + . . . = 0 

$4 + T q 5 t z + ~ T 2 q 5 ~ z ~ + a ~ ~ q 5 ~ z + T ~ q 5 ~ ~ q 5 z - r  

- K 2 V 2 ~ + S z V - [ V ~ ( V ~ ) 2 ] +  ... = 0 

If the amplitude of the instability is sufficiently small, we expect the nonlinear 
solution to be reasonably close to the solution of the linear problem. With this in 
mind we expand 7 and q5 in what can be considered to be time-dependent Fourier 
series 

( 2 . 6 a )  

( 2 . 6 b )  

where $, and x n  are eigenfunctions of the linear problem, determined from satisfying 
( 2 . 2 ~ ~ )  and ( 2 . 2 4 .  More explicitly, $, and xn are related by 

where $, satisfy 
(VZ+ it;) $, = 0, 

( 2 . 7 a )  

( 2 . 7 b )  

V$,.n = 0 (on ax), ( 2 . 7 ~ )  

with k n  = lknl ( 2 . 7 d )  

and (2 .7e )  

specifies $, to be orthonormal. 

the following system of ordinary differential equations : 
Substituting ( 2 . 6 )  into ( 2 . 5 ) ,  then weighting with $n and integrating Ss-dX yields 

aj - K~ bj = C [a, b,  it; Cjlm -a, b, Dilm] 
1 ,  m 

+ C [%,a, b, K ,  ki Cjlmn - a ,  a,  b, K,  Djlmnl + H.O.T., ( 2 . 8 a )  
1 ,  m, 12 

h j - ( l  - k ; K 2 ) a j  = [ - ~ , d m K , ~ ~ l m - ~ b ~ b m ( ~ j ~ m ~ K ~ K m ~ j ~ m ) ~  
1 ,  m 

+ c [ - + . l a m  b n  kicjlmn-albmbn ( K n  D j t m n  + K m  k ;Cj lmn)  
1 ,  m, n 

+~K2a,a,a,E,,,,]+H.0.T., (2 .8b )  
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where 

E j l m n  = ‘JJ(v$j*v$l) S ( \ J + m . v $ n )  (2.9e) 

and K ,  = kn tanh ( k ,  d) .  (2.10) 

The following formulae are obtained using integration by parts : 

Repeated application of (2.11 b) gives 

and 

(2.11 a)  

(2.116) 

(2.11 c) 

(2 .114  

3. The outer solution 
We seek a solution to (2.8) satisfying the following initial conditions: 

a,(O) = E ,  b , (O)  = 0, an(0) = bn(0) = 0 (n =+ l),  (3.1 a, b,  c)  

where c 4 1. Physically, these conditions correspond to an initial surface deflection 
consisting of a single Fourier mode with r.m.s. slope E ,  and zero initial velocity. We 
then implement the ‘method of strained coordinates ’ (Van Dyke 1975). Expanding 
in terms of the small parameter E we obtain 

an = E S n l  a1,(7) + E2a2n(7) + c3a3,(7) + . . .) 
bn = eSnl b1,(7) + e2b,,(7) + c3b3,(7) + . . . , 

( 3 . 2 ~ )  

(3.2b) 

7 = t(l+s2p2+ ...), ( 3 . 2 ~ )  

where k ,  = 1 and K, = T = tanhd. Substituting these expansions into (2.8) and 
equating like powers of E we obtain a t  order-s a system of o.d.e.’s governing the 
growth of the linear instability 

CE,, -Tb,, = 0, i5,, - (1 - K 2 )  a,, = 0. (3.3a, b)  

The solution of this system is 
0- 

a,, = coshg17, b,, = $ s i n h v , ~ ,  (3.4~2, b) 

where 0-i = T(l - K 2 ) .  (3.5) 
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Note that geometry does not enter in the linear solution. We must go to higher order 
to find the influence of geometry. 

At order-e2 we obtain a system of o.d.e.’s with the same left-hand side as the first- 
order equations and forced by quadratic combinations of the first-order solution 

and 
(3 .9a)  

(3.9b) 

(3.9c) 

( 3 . 9 4  

Finally, a t  order-e3 we obtain a system this time forced by combinations of both 
the first- and second-order solutions 

b,, - (1 -K2kh)  a3, = Qg) cosh a1 7 + QK) cosh 3a1 7 
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where Pg),  PE), Pgk, Pgk and Q g ) ,  QE), QEL, Qgk are constants (given in Appendix 
A). Eliminating b,, we obtain 

a,, - K ~ (  1 - K21c&) a3, = [al PE) + K, Qg)  - 2a2 1 ~ 2  am11 cash a17 

+ [3a1 Pg) + K,  Q$] cosh 3a1 7 

+ C [ ( a1 - a,) Pgk + K,  QgL] cosh (a, - a,) 7 

+ C [(al +an) PEL + K, Q g k ]  cosh (al + a,) 7 .  

n 

(3.12) 

Ordinarily, a secular term (i.e. a term of the type t cosh a1 t )  would appear in the 
solution of (3.12) with m = 1. When K > 1, al is imaginary and the secularity will 
eventually cause a31 to overtake aZ1 and a,,, and thus cause the asymptotic series to 
become disordered. Applying the method of strained coordinates allows the secular 
term to be suppressed by the proper choice of the constant pz. However, when K < 1, 
a1 is real and the rapid growth of all the terms in causes the asymptotic series 
to become disordered long before the secularity becomes important. Thus, 
elimination of the secular term when K < 1 is of questionable utility. Either way, 
suppressing the secularity does not make the solution any less valid ; therefore, in 
order to obtain the best solution for all values of K, we shall apply the method of 
strained coordinates. The coefficient multiplying cosh a1 7 in (3.12) when m = 1 must 
be set to zero. This is accomplished by choosing 

n 

a1 Py)  + K~ Qil) 
2a; ruz = 

The solution of the third-order problem is then 

a3, = A:: (cosh a1 7 - cosh am 7 )  + AgA (cosh 3a, 7 - cosh a, 7 )  

+C A$zn (cash (al -an) 7 -  C O S ~  a, 7 )  

+ C ArAn (cash (g1 + an) T - C O S ~  a, 71, 

n 

n 

(3.13) 

( 3 . 1 4 ~ )  

a 

Urn 

a 
s inha ,7- -1s inham~ s i n h 3 a , 7 - 3 ~ s i n h a m 7  

a m  

n 

sinh a, 7 

+2 BpAn (sinh (a, - a,) 7 -  - an) sinh a, 7 
am 

a +a ) 

GTn 
, (3.14b) 

n cf rn 
+ C BpAn (sinh (a1 + a,) T - ~  sinh a, 7 

where AFA, Ark, A$%,, A;$, and Biz, BFA, Bizn, Bi%,, BfAa are constants (given in 
Appendix B). 

4. The inner solution 
The solution of the previous scction is valid so long as the expansions representing 

the solution remain ordered. As the parameter K is allowed to approach 1 a point is 
reached where this is no longer true. More precisely, as soon as K 2  - 1 = O(e2) ,  the 
second term in ( 3 . 2 ~ )  is the same size as the first. If we let K2-1 = O(e2), then 
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and u1 = T (  1 -K2)i  = O(e), a, - c cosh u1 t = O(e), 
d/d7 N u1 = O(E) .  These results suggest the following inner expansions : 

b, - e(u,/T) sinh u1 t = O(E'),  

K2 = 1+e2a+ ..., 

a,  = €Snla,l(t,)+e2a,,(tl)+ ..., 

b, = e2Sn1 b,,(t,) + e3b3,(tl) + . . ., 
t, =e t .  

After substituting these expansions into (2.8) we obtain a t  leading order 

d,, -Tb,, = 0,  

6 2 1  + aall = $ 4 1  Ell,,. 

After eliminating b,, we obtain 

ii,, + aTa,, = $Ta!, Ell,,, 

which is subject to the following initial conditions : 

a,,(O) = 1 ,  6,,(0) = 0, 

The solution of this initial-value problem is (Davis 1962, pp. 207-209) 

a,, = cn (A t ,  I m), 

where h2 = T ( c x - ~ E ~ ~ ~ ~ ) ,  

m = -  9-L,, 
(a-91111) ' 

and en is a Jacobian elliptic function. When a > iEllll the solution 
oscillatory behaviour, thus the system is stable. On the other hand, when a < iEllll 
the solution grows without bound implying instability. Therefore, a = iEll,, defines 
cutoff and 

gives the nonlinear 
Letting a+ & c/3 

Kz = 1 +$s~E~,,, 

correction to the cutoff wavenumber. 
we find 

where i = 2/ - 1 .  Using 

cn(u1m) = cosu+O(m) asm+O 

all = Gosh gl t + 0 
we then find 

which matches to the outer solution a t  order-e. 

( 4 . 1 ~ )  

(4.1 b )  

(4.1 c) 

(4.1 d )  

( 4 . 2 ~ )  

(4 .2b )  

(4.3) 

(4.4a, b)  

(4.5a) 

(4.5 b )  

(4.5c) 

exhibits 

(4.9) 

(4.10) 

5. The eigenfunctions 
The solutions in the preceding two sections were found without specifying the 

cross-sectional geometry. In  this section we consider two geometries. The particular 
eigenfunctions $n for these geometries are then given. 
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5.1. Rectangular geometry 

Say that we want to consider the instability in a container of rectangular cross- 
section with sides of lengths X' and Y' .  We define 

x = ( x , y ) ,  s = { ( X , y ) : O f x < x , O < y <  Y>, (5.1 a ,  b )  

where x = X'k', Y = Y'E'. (5.2a, b)  

The corresponding eigenfunctions are then 

mn nrc 
X Y 

@% = c,, cos-x cos--y (m = 0, 1,  2, 3, ..., n = 0, 1, 2, 3, ...). (5.3) 

and the c,, are normalizing constants given by 

2 

[(I +SO,) (1  + ~ o n ) l ~  
Cmn = (5.4) 

Because of the limited types of interactions allowed in this weakly nonlinear analysis, 
we need only consider a fraction of the set given above. We need only consider modes 
n such that C,,, or C,,,, =i= 0. If we seek a solution with primary-mode indices ( p ,  q )  
(i.e. an initial condition with m = p and n = q )  so that 

PZ L 1 
= c p p  cos-x cos-y = cpq cos X Y (p + 1 ) P  cos (L2 + 1)"y' 

then we need only consider 

mL n 
ki = c,, cos x cos (m = 1, 2,  3 n = 1 ,  2,  3), (5.6) (L2+ 1): (L2+ 1 ) i Y  

(5.7) L = -  4 where 

is an aspect ratio. 
5.2. Hexagonal instability 

The hexagonal instability is a member of the rectangular geometry with the 
following primary mode (Chandrasekhar 1961, pp. 47-50) : 

k l  

(5.8a) 

Again because of the limited interactions that are allowed in this analysis, the only 
other modes that we need to  consider are 

$2 = 1 ,  (5.8b) 

$3= ~ ~ [ 2 c o s x c o s ~ 3 y + c o s 2 x ] ,  ( 5 . 8 ~ )  

(5.8d) 

(5.8e) 

d 3  3 x 3 4 .  (5.8f) 
$s = ~ [ c o s ~ x c o s - y + c O S 2 x c o s d 3 ~ + c o s f , c o s -  2 

2 
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5.3. Circular geometry 
We now consider the instability in a circular container of radius R'. In  this 
geometry 

x = ( r ,  O), S = ( ( r ,  8): 0 < r < R, 0 < 0 < 2n}, (5.9a, b) 

where R = Rk'. 
The complete set of eigenfunctions is then 

(5.10) 

$i = c,, cos(m0) J m ( k m n r )  (m = 0, 1, 2, 3, ..., n = 1, 2, 3, 4, ...), (5.11) 

where c,, are normalizing constants given by 

and kmn are determined from 
J&(k,,  R)  = 0. (5.13) 

Like the rectangular modes, this set can be reduced. If we seek a solution with the 

(5.14) 
primary mode 

where Up, satisfies J;D(k;DPR) = 0, then we need only consider 

$1 = cpq cos 0 6 )  Jp(k;q?"')> 

m = O , p , 2 p , 3 p ,  n = l , 2 , 3  ,.... 

Note that, because products of Bessel functions do not possess the orthogonality 
properties of circular functions, the radial index must cover the entire range. The 
series must be truncated at  some point in order to obtain numerical results. In  the 
results given here, only modes n such that 

C,,, 2 5 x or Cnlll 2 5 x lop3 

were retained in the solution. 
The asymptotic solutions require evaluating the integrals Clmn, Cilmn, Dlmn, Dilmn 

and Eilmn ; though, if use is made of (2.11 a d ) ,  we need only evaluate Clmn, Cjlmn and 
E,lmn. In the rectangular geometry these integrals are easily solved analytically. 
However, in the circular geometry one obtains integrals of products of three or four 
Bessel functions, which, having no simple solution, must be solved numerically. A 
very efficient and accurate Gaussian integration scheme was used for this evaluation 
(see Jacobs 1986 for details). 

6. Results and discussion 

The analysis of $4 gives the expression 
6.1. Nonlinear correction to the cutoff wavenumber 

K ;  = 1 + €201,, 
where a, = $Ellll. 

The primary mode of the two-dimensional instability is 

$, = 4 2  cosx. (6.3) 
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and ac,ZD = $. (6.5) 

In this analysis we define E as the r.m.s. surface slope. If instead, we had defined E* 

as the amplitude of the surface slope we would obtain (for the two-dimensional 
instability) Kt  = 1+%~*’ 

which is in agreement with Nayfeh (1969). 

(6.6) 

Similarly, it is easy to show that for the rectangular three-dimensional instability 

- (9L4 + 2L2 + 9) 
8(L2 + 1)’ ‘ 

ac .rec t  - (6.7) 

Here, has a maximum at L = 0 (or L = co) with C L , , ~ = ~  = 8 and a minimum at  
L = 1 with a,,ZD, indicating that the two-dimensional 
solution is not recovered when the aspect ratio in the rectangular solution is allowed 
to approach zero (or infinity). This is because the rectangular solution is three- 
dimensional for all values of L. A similar result was obtained by Verma & Keller 
(1962) on the subject of three-dimensional water waves. 

The calculation for the hexagonal disturbance yields 

= g. Note that a,,L=o 

Rayleigh-Taylor instability can be viewed as a bifurcation problem with K serving 
as the bifurcation parameter. The linear stability analysis gives a bifurcation point 
a t  K ,  = 1, and the analysis of $ 4  gives the first approximation for the behaviour of 
the branch near e = 0:  K ,  = 1 + +e2a,. (6.9) 

Note that when on the stable side of the critical point (K > l ) ,  a disturbance of large 
enough amplitude will produce instability. Thus, K = 1 is a subcritical bifurcation 
point. Also note that, the larger a, is, the smaller the amplitude E has to be to produce 
instability. This implies that  geometries with large a, are preferred, in a sense, over 
ones with smaller a,, and that disturbances with long thin shape are preferred over 
other rectangular modes. This preference is also illustrated by the fact that a t  
K = 1 the growth rate of the inner solution is proportional to a!. 

The parameter a, was calculated for several primary modes in the circular 
geometry, where the primary mode is given by 

= c,, cos (mO)J,(k’,, r’) .  

These calculations were done numerically for m = 1, . . . , 4 and n = 1, . . . , 20 and are 
listed in table 1. Note that for fixed m, a, increases with increasing n. In fact it is easy 
to show that a, increases like In (n) as n + co. Physically, letting n approach infinity 
with m fixed, is equivalent to  letting L approach zero in the rectangular geometry. 
That is, the instability is made to get longer and thinner as n increases. These results 
reinforce those in the rectangular geometry, namely that long thin shapes are 
preferred over those more equally proportioned. 

6.9. Growth of the nonlinear instability 
The instability described by the outer solution consists initially of a single normal 
mode (the ‘primary’ mode). For small enough E ,  the amplitude of this mode is 
dominated by the first-order solution a,, (linear theory). However, as the amplitude 
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n 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

m = O  

0.775 767 
0.981 026 
1.1 13 995 
1.212352 
1.290 374 
1.355015 
1.410 186 
1.458 303 
1.500 962 
1.539 274 
1.574041 
1.605 864 
1.635 202 
1.662 414 
1.687 787 
1.71 1 554 
1.733906 
1.755002 
1.774976 

- 

m = l  
0.657 25 1 
0.944 832 
1.174 957 
1.340 140 
1.468444 
1.573 192 
1.661 649 
1.738 176 
1.805597 
1.865 841 
1.920284 
1.969 944 
2.015 589 
2.057 820 
2.097 110 
2.133 842 
2.168 327 
2.200 825 
2.231 552 
2.260 690 

m = 2  
0.630663 
0.795 445 
0.969848 
1.106 575 
1.217 686 
1.310983 
1.391 288 
1.461 733 
1.524 448 
1.580 950 
1.632 348 
1.679 483 
1.723003 
1.763422 
1.801 148 
1.836 518 
1.869 807 
1.901 246 
1.931 028 
1.959319 

m = 3  
0.733 122 
0.780 70 1 
0.912 120 
1.025 345 
1.121 553 
1.204 569 
1.277 371 
1.342 108 
1.400 344 
1.453241 
1.501 680 
1.546 344 
1.587 772 
1.626397 
1.662 570 
1.696 582 
1.728 674 
1.759 049 
1.787 882 
1.815 320 

m = 4  
0.845 80 1 
0.797 300 
0.894 380 
0.988038 
1.07 1 397 
1.145 304 
1.211312 
1.270 795 
1.324852 
1.374349 
1.419970 
1.462 264 
1.501671 
1.538 554 
1.573212 
1.605 893 
1.636 808 
1.666 136 
1.694030 
1.720 623 

TABLE 1. u, as a function of m and n in the circular geometry 

increases the effects of the nonlinearities begin to emerge. Energy is fed, via the 
quadratic and cubic nonlinearities to harmonics (or secondary modes). The addition 
of these harmonics in the solution causes the basic shape of the interface to change. 
In  addition, the interaction of the secondary modes with the primary (and in some 
cases the interaction of the primary mode with itself) causes the growth of the 
primary mode to be modified. This modification, unlike the linear solution, is a 
function of geometry and can be used to determine how geometry effects the growth 
of the instability. This information also provides a means to predict which types of 
shapes will be selected in a real system. 

Figure 1 is a plot of the primary-mode amplitude a, of the two-dimensional 
instability as a function of time with E = 0.1, K = 0 (no surface tension), and d = co 
(infinite depth). Also plotted in this figure is a dashed line representing linear theory. 
This plot is typical of all geometries considered for these parameter values and is 
presented here to illustrate the general behaviour of the nonlinear solutions which 
follow. Initially, the nonlinear solution shown in figure 1 closely follows linear theory. 
As the amplitude increases, the curve begins to fall below the dashed line. This 
continues until a point of maximum amplitude is reached, after which the nonlinear 
solution decreases rapidly. The relative size of the components a21 and a3, with 
respect to  a,, is indicated by the distance separating the linear and nonlinear 
solutions. When this distance becomes large, the asymptotic series have broken down 
and the solution is invalid. We know from earlier experimental observations (Lewis 
1950 and Emmons et al. 1960) that, as t +  00, the growth of surface elevation should 
asymptotically approach that of constant acceleration in the crests (7 - t'), and 
constant velocity in the troughs (7 - t ) .  This indicates that d2a,/dt2 should always be 
positive. Since negative curvature in this plot is clearly unrealistic, the inflexion 
point in the nonlinear solution curve can be viewed as the limit of validity of the 
solution. The nonlinear solutions in the following figures will be plotted up to  the 
inflexion point. 
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t 

FIGURE 1. Primary-mode amplitude versus time of the two-dimensional instability with E = 0.1, 
K = 0 and d = co. The dashed line is linear theory. 
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FIGURE 2. Primary-mode amplitude versus time of the rectangular instability with E = 0.1, 
K = 0, d = 00 and several aspect ratios. The dashed line is linear theory. 

Figure 2 is a plot of the primary-mode amplitude a, as a function of time for 
several rectangular instabilities. Given in this plot are solutions with aspect ratios 
L = 1, 0.75, 0.5,  0.25 and 0. These were again calculated with E = 0.1, K = 0 and 
d = co . As in the preceding figure, the curves initially follow linear theory, then begin 
to fall below the dashed line as the amplitude increases. In  addition, the solutions 
themselves begin to diverge and the effect of geometry becomes apparent. The figure 
contains solutions of the rectangular instability with a number of aspect ratios, and 
illustrates the dependence of the rate of growth of the nonlinear instability on aspect 
ratio. This plot shows that the rate of growth is monotonic with respect to aspect 
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FIGURE 3. Primary-mode amplitude versus time of the hexagonal, square, two-dimensional and 
zero-aspect-ratio instabilities with E = 0.1, K = 0 and d = co. The dashed line is linear theory. 

ratio and that the instability with L = 1 grows fastest and L = 0 grows slowest. The 
results indicate a preference toward an instability of square shape over other 
rectangular modes. 

Figure 3 is a plot of the primary coefficient as a function of time of the hexagonal 
instability. Also given in this figure are the solutions of both the square and the two- 
dimensional instability. As in figure 2 these solutions were calculated with s = 0.1, 
K = 0 and d = co. The hexagonal instability possesses unique characteristics which 
are immediately apparent in the figure. Note that there are two separate hexagonal 
solutions in this plot. One is labelled hex (+), the other hex ( -  ), where the (+ ) or 
( - ) indicate the sign of the initial amplitude. The hexagonal ( + ) pattern consists of 
grid of hexagonal cells oriented with crests in the centre of the cells and troughs a t  
the cell boundaries. The hexagonal ( - )  pattern consists of grid of hexagonal cells 
oriented with troughs in the centre of the cells and crests a t  the cell boundaries. The 
hexagonal instability is unique in that a change in sign of the initial amplitude 
changes the solution in a non-trivial way. Changing the sign of e in a rectangular 
instability is equivalent to multiplying the entire solution by - 1  (i.e. a,(t; - 6 )  = 
-a,(t;  8 ) ) ;  whereas in the hexagonal pattern, a change of sign cannot be resolved in 
this manner. 

Figure 3 shows that the hexagonal instability oriented with troughs at  the cell 
centres grows significantly faster than the one with the opposite orientation. This is 
because C,,, (and therefore a12) is non-zero, making the hexagonal instability the only 
solution in the rectangular geometry in which terms quadratic in 6 appear in the 
primary coefficient. Thus, growth is enhanced with the right choice of the sign of s ;  
and consequently the hexagonal disturbance grows faster than the square, two- 
dimensional, or any other pattern in the rectangular geometry. Also, note that the 
growth of the hexagonal ( - ) solution exceeds linear theory for a good portion of its 
evolution. 

Figure 4 contains plots of the hexagonal, square, two-dimensional and zero- 
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FIGURE 4. Primary-mode amplitude versus time of the hexagonal, square, two-dimensional and 
zero-aspect-ratio instabilities with B = 0.03, d = cc and various K .  - - - - ,  hex ( - ) ;  ---, square; 
__ , L = 0;  two-dimensional; ....-., linear theory. 

L 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

K = O  

0.492 933 
0.434 123 
0.440 154 
0.447 269 
0.454550 
0.461 185 
0.466642 
0.470690 
0.473 344 
0.474768 
0.475 190 

K = 0.3 

0.437 235 
0.441 203 
0.446 633 
0.452923 
0.459337 
0.465 199 
0.470043 
0.473655 
0.476032 
0.477 31 1 
0.477 690 

K = 0.6 

0.461 497 
0.464929 
0.468 772 
0.472 732 
0.476486 
0.479744 
0.482243 
0.484 745 
0.485752 
0.486386 
0.486 576 

K = 0.9 

0.549 582 
0.552 123 
0.553 264 
0.552 347 
0.548 759 
0.543 249 
0.537 570 
0.533 103 
0.530 161 
0.528631 
0.528 187 

TABLE 2. a,(t+) as a function of L and K for the rectangular instability with E = 0.03 

aspect-ratio instabilities ca1culat)ed with three different values of K ,  illustrating the 
effect of surface tension on the growth of the nonlinear instability. These solutions 
were calculated using E = 0.03 and d = co with K = 0,0.7,0.9. The figure shows that 
increasing K amplifies the growth of the nonlinear solutions, and that this 
amplification affects the hexagonal instability to a greater extent than the other 
modes. Note that when K < 0.7 the ranking with respect to rates of growth of the 
different instabilities is uniform. In  this range, hexagonal ( - ) always grows fastest 
followed by the square, two-dimensional and zero-aspect-ratio instabilities. However 
when K = 0.9 this order changes, where at that point hexagonal ( -  ) still grows 
fastest, with L = 0 second, followed by the two-dimensional and square instabilities. 

Table 2 gives the primary amplitude a, of the rectangular instability as a function 
of aspect ratio L and the parameter K .  In  this table the amplitudes are taken at time 
t+,  given by 

eall(gl t') = t .  (6.10) 

The table shows that in the range 0 < K < 0.6, the rectangular instability with 
L = 1 grows fastest, but when K = 0.9 preference shifts towards the modes with 
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FIGURE 5.  Primary-mode amplitude versus time of several axisymmetric ( - ) instabilities with 
B = 0.1, K = 0 and d = 00. The dashed line is linear theory. 

t 

lower aspect ratio. Recall that near the cutoff wavenumber, we found the rectangular 
mode with L = 0 to be the most unstable. Thus in the limit as K + 1, the results of 
the outer solution appear to be in agreement with those of the inner solution. 

Like the hexagonal instability, the circular axisymmetric instability has terms, 
quadratic in 8, which appear in the primary-mode expansions, and thus shows 
sensitivity to the sign of the initial amplitude. Figure 5 is a plot of the primary 
coefficient as a function of time for several axisymmetric modes. Given in this plot 
are the solutions with primary-mode indices ((0, n ) :  n = 2 ,  3, 4, 5 ,  6, ll}, oriented so 
that the point r = 0 is a trough (axisymmetric (-)).  These solutions were calculated 
using e = 0.1, K = 0 and d = CO. Figure 6 gives solution curves for the same initial 
modes as figure 5 but oriented with a crest a t  r = 0 (axisymmetric (+ )). In  the first 
figure, the solution with index (0 ,2)  dominates the other modes, with the rate of 
growth decreasing monotonically with increasing radial-mode index. In the 
corresponding solutions with centre crests, no single mode dominates. Instead all the 
curves are more or less grouped together, though the rate of growth seems to decrease 
steadily with increasing n when n is large. For low radial-mode index, the 
instabilities with centre troughs grow significantly faster than the ones with centre 
crests. This difference decreases with increasing n. 

Intuitively one might expect the axisymmetric solution to converge to the 
Cartesian two-dimensional solution as the radial-mode number approaches infinity ; 
however, that does not appear to be the case. The solution with highest mode index 
(ie. n = 11)  has already fallen below the two-dimensional solution; and in fact, it 
appears that the solution does not converge at all. The reason for this lies in the fact 
that like E,,,, the integrals C,,,, and D,,,, do not converge as n + 00. 

Solutions of another set of circular modes are given in figure 7 .  The primary 
coefficient of modes with indices {(l ,  n) : n = 1, 2 ,  3, 4, 5 ,  lo} are plotted in this figure, 
calculated using the same parameter values as the preceding two figures. Note that,  
although these instabilities do not share the property of dependence upon the sign of 
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FIGURE 6. Primary-mode a,mplitude versus time of several axisymmetric ( + ) instabilities with 
E = 0.1, K = 0 and d = cc . The dashed line is linear theory. 
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FIGURE 7. Primary-mode amplitude versus time of several circular instabilities with m = 1 and 
with 8 = 0.1, K = 0 and d = co. The dashed line is linear theory. 

the initial amplitude, they do share the characteristic that the rate of growth 
decreases with increasing radial mode index. Again, one might expect the circular 
non-axisymmetric solutions to converge to the zero-aspect ratio rectangular solution 
as n + co ; however, like the axisymmetric solutions, that does not appear to be the 
case. 
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m n= 1 

0 
1 0.4589 
2 0.4669 
3 0.4627 
4 0.4568 
5 0.4505 
6 0.4441 
7 0.4378 
8 0.4315 
9 0.4254 
10 0.4194 
11 0.4135 
12 0.4078 
13 0.4021 
14 0.3966 
15 0.3912 
16 0.3858 
17 (0.3805) 
18 0.3753 

- 

n=2 

0.5169 
0.4489 
0.4600 
0.4614 
0.4605 
0.4588 
0.4567 
0.4543 
0.4518 
0.4493 
0.4467 
0.4442 
0.4416 
(0.4390) 
0.4365 
0.4339 

n=3 

0.4822 
0.4347 
0.4493 
0.4533 
0.4546 
0.4546 
0.4540 
0.4530 
0.4518 
(0.4504) 
0.4489 

n=4 

0.4708 
0.4240 
0.4404 
0.4460 
0.4486 
0.4497 
0.4500 
(0.4499) 
0.4494 
0.4487 
0.4478 

n=5 

0.4590 
0.4154 
0.4331 
0.4397 
(0.443 1) 
0.4450 
0.4460 
0.4464 
0.4464 
0.4462 
0.4458 

n=6 

0.4522 
0.4083 
(0.4269) 
0.4342 
0.4382 
0.4406 
0.442 1 
0.4430 
0.4434 
0.4436 
0.4435 

TABLE 3. a,(t+) for several circular modes with E = 0.01 and K = 0 

n=7 

(0.4452) 
0.4023 
0.4214 
0.4293 
0.4338 
0.4366 
0.4385 
0.4397 
0.4405 
0.4409 
0.441 1 

R 
19.6159 
19.51 29 
19.1960 
19.94 19 
19.0046 
19.8832 
19.1045 

K = O  

0.445 192 
0.426860 
0.433 139 
0.449868 
0.450 399 
0.439015 
0.380478 

K = 0.3 

0.455 354 
0.436 794 
0.450663 
0.456449 
0.456925 
0.447 156 
0.396 792 

K = 0.6 

0.487067 
0.467 403 
0.474580 
0.477499 
0.477682 
0.472 775 
0.447 945 

K = 0.9 

0.593 089 
0.568316 
0.557 970 
0.551 952 
0.550 929 
0.561 071 
0.616927 

TABLE 4. a,(t+) as a function of K for the circular modes with 19 < R < 20 and with E = 0.01 

I n  the rectangular geometry we learned that when K = 0, the rectangular 
instability with L = 1 grows faster than any other rectangular mode. One would 
expect a similar preference in the circular geometry. This implies that  for large m and 
n the fastest growing modes should lie on some diagonal of (m, n)-space (i.e. m - n 
as m, n-t CO). Table 3 gives values of a,(t+) for a number of circular modes. Near 
(m, n) = (0, l),  the axisymmetric modes grow faster than the others; however, 
sufficiently far from the origin it appears that the instabilities that grow the fastest 
lie on a line passing through the indices (3, 2 )  and (9, 3). Each mode in table 3 has 
associated with i t  a value of the dimensionless radius R. I n  comparing different 
instabilities in the circular geometry one should compare modes with the same 
wavenumber and which exist in an enclosure with the same radius. Moving out from 
the origin is the same as increasing R. The change in R occurs in discrete jumps; 
however, when R is large, these jumps are relatively small. Marked in table 3 are 
seven modes with nearly equal R (i.e. 19 < R < 20). It is evident that  the mode 
(9, 3) has a larger value of a,(t+) than any other mode in this set. Table 4 illustrates 
the effect of surface tension on the growth of the seven modes marked in table 3, and 
shows that when K = 0 the mode (9, 3) has a slight advantage over the others. This 
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FIGURE 8. Three views of the square instability with B = 0.1, K = 0 and d = 00. 

(a )  t = 1.5, a, = 0.2341 ; ( b )  t = 2.0, U, = 0.3703; (c) t = 2.5, al = 0.5809. 

advantage is maintained a t  K = 0.3; however when K is increased the lead shifts 
towards the modes on each end of the column. At K = 0.9 the mode (17,  1) grows 
faster than the others. The table shows the expected result that when K = 0 modes 
with aspect ratio near 1 grow faster than those with longer thinner shape; however 
near K = 1,  modes with zero aspect ratio dominate. 

Figure 8 gives three consecutive views of the square instability a t  t = 1.5, 2.0 and 
2.5.  This solution was calculated with E = 0.1, K = 0 and d = 00. Shown in this figure 
are two wavelengths in both the x- and y-directions, thus providing a view of four 
square cells. Each of these consists of a trough located a t  the centre of the cell with 
crests a t  each of the four corners. At t = 1.5 the solution, for the most part, contains 
only the primary mode, making the shape nearly sinusoidal in both the x- and y- 
directions. As time progresses, the higher harmonics begin to be observable and a t  
t = 2.5 the effect of nonlinearity on the surface shape is clearly evident. At that point, 
the troughs have become wider and more spherical, taking on the characteristics of 
bubbles. In addition, the crests have become sharper. In  the latter stages of 
development (as shown in figure 8 c ) ,  the instability appears as an array of square 
cells, the centres of which contain nearly spherical bubbles. The boundaries of each 
cell are defined by sharp two-dimensional crests with larger three-dimensional peaks 
a t  each of the four corners. 
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FIGURE 9. Three views of the hexagonal ( - )  instability with E = 0.1, K = 0 and d = 00. 

(a )  t = 1.5, a,  = -0.2431; ( b )  t = 2.0, a,  = -0.3958; (c) t = 2.5, a,  = -0.6478. 

(c) 

FIGIJRE 10. Three views of the axisymmetric ( - )  instability (0, 2) with 6 = 0.1, K = 6 and 
d = CO. ( a )  t = 1.5, a,  = 0.2438; ( h )  t = 2.0, a, = 0.3975; (c) t = 2.5, a, = 0.6517. 

FLM 187 12 
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(4 
FIGURE 11. Three views of the axisymmetric ( - )  instability (0, 6) with E = 0.1, K = 0 and 

d = CO. (a )  t = 1.5, a,  = 0.2369; ( b )  t = 2.0, a, = 0.3745; (c) t = 2.5,  a,  = 0.5700. 

Figure 9 gives three similar views of the hexagonal ( - )  instability. Shown in this 
plot are two wavelengths in both the x- and y-directions. This hexagonal instability 
is characterized by a hexagonal grid of roughly circular troughs each surrounded by 
a hexagonal-shaped ridge. Each of these cells is surrounded by six equidistant cells. 
Like the square instability, a t  t = 1.5 the solution is dominated by the primary mode, 
making the surface shape sinusoidal in nature. At t = 2.5 the higher harmonics are 
visible. At that point the instability has become a grid of nearly spherical bubbles 
surrounded by ridges of nearly uniform height outlining the borders of the hexagonal 
cells. 

Figure 10 gives three views of the axisymmetric ( -  ) instability with n = 2 again 
taken a t  t = 1.5, 2.0 and 2.5. Like the others, this solution was calculated with 
e = 0.1, K = 0 and d = 00. At t = 1.5 the surface shape is primarily that of the Bessel 
function J o ( r ) .  Note that as time progresses the centre trough becomes wider and 
more spherical. Likewise, a narrow crest begins to form near the boundary. If this 
instability could be viewed for a long enough time, the surface would evolve into a 
single bubble rising up (‘up’ meaning opposite to the body force) the tube with a thin 
film of liquid falling down the edge of the cylinder. 

Figure 11 gives a time sequence of another axisymmetric ( - ) instability, this time 
with n = 6. The instability here takes the form of concentric ring waves. As the 
effects of the nonlinearities emerge, the crests become sharper and narrower, and the 
troughs wider, much the same as the two-dimensional instability. 
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FIGURE 12. Three views of the circular instability (4, 2) with E = 0.1, K = 0 and d = CO. 

(a )  t = 1.5, a, = 0.2339; ( b )  t = 2.0, U, = 0.3687; (c) t = 2.5, a, = 0.5710. 

Figure 12 is three views of a circular, fully three-dimensional instability. This 
solution was calculated with the initial mode (4 ,2 )  and it is one of the modes on the 
so-called ‘diagonal’ of mode-index space. In  these views, the instability evolves from 
a more or less sinusoidal shape to one consisting of broad spherical bubbles separated 
with sharp narrow crests. This solution is different from the others in that the crests 
are in the shape of triangular pyramids. 

7. Summary 
We derived a pair of weakly nonlinear asymptotic solutions for three-dimensional 

Rayleigh-Taylor instability. These solutions were developed assuming an arbitrary 
plan geometry and then evaluated for several initial surface shapes. In  examining the 
growth of the amplitude of the primary mode, we found that the hexagonal and 
axisymmetric instabilities grow faster than any of the other types in their respective 
geometry, and that this advantage increases slightly with increasing K .  In  addition 
we found that for low to moderate K ,  disturbances that are more or less equally 
proportioned in the lateral directions were favoured; however, as K +  1 the 
preference shifts toward modes with longer and thinner shape. In  viewing the various 
instabilities we found that the effect of the nonlinearities on surface shape is to 

12-2 
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transform the troughs into bubble-like structures as well as to transform crests into 
ridges or spikes. It is interesting to note that the instabilities displaying the fastest 
growth in the low to  moderate K regime were those that formed spherical bubbles in 
the later stages of development. For example, the hexagonal ( - )  and square 
instabilities form spherical bubbles and were found to grow significantly faster than 
other rectangular solutions forming long thin troughs such as the two-dimensional or 
zero-aspect-ratio instabilities. Similarly, the axisymmetric ( - ) instability with n = 2 
was also found to grow faster than other solutions that form trough-like bubbles 
such as the axisymmetric instabilities with high radial-mode index. This evidence 
suggests that the ability to form spherical bubbles is an important factor in selecting 
which geometry grows the fastest. 

This work was supported by the National Science Foundation under grant MEA 
81-05542. 

Appendix A. Constants in the forcing functions of the third-order equations 
(3.11a, b) 
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Appendix B. Constants in the third-order solution (3.14a, b) 
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(ul + a,) PEL + K, Qg; 
( a, + an)2 - a; 
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